library(tidyverse)
library(AppliedPredictiveModeling)
library(caret)
library(stargazer)
stargazer(data_categorical, type = "text", title = "Descriptive statistics", digits = 1)
data_categorical$Covid_tested <- as.factor(data_categorical$Covid_tested)
data_categorical$ID <- NULL
data_categorical <- as.data.frame(data_categorical)
class = sapply(data_categorical, class)
table(class)
data_categorical$country <- as.factor(data_categorical$country)
data_categorical$age <- as.numeric(data_categorical$age)
data_categorical$gender <- as.factor(data_categorical$gender)
data_categorical$no_days_symptoms <- as.numeric(data_categorical$no_days_symptoms)
data_categorical$how_unwell <- as.numeric(data_categorical$how_unwell)
data_categorical$diabetes_type_one <- as.numeric(data_categorical$diabetes_type_one)
data_categorical$diabetes_type_two <- as.numeric(data_categorical$diabetes_type_two)
data_categorical$liver_disease <- as.numeric(data_categorical$liver_disease)
data_categorical$lung_condition <- as.numeric(data_categorical$lung_condition)
data_categorical$kidney_disease <- as.numeric(data_categorical$kidney_disease)
data_categorical$heart_disease <- as.numeric(data_categorical$heart_disease)
data_categorical$hypertension <- as.numeric(data_categorical$hypertension)
data_categorical$obesity <- as.numeric(data_categorical$obesity)
data_categorical$asthma <- as.numeric(data_categorical$asthma)
data_categorical$temperature <- as.factor(data_categorical$temperature)
data_categorical$sputum <- as.factor(data_categorical$sputum)
data_categorical$sore_throat <- as.factor(data_categorical$sore_throat)
data_categorical$self_diagnosis <- as.factor(data_categorical$self_diagnosis)
data_categorical$nausea_vomiting <- as.factor(data_categorical$nausea_vomiting)
data_categorical$nasal_congestion <- as.factor(data_categorical$nasal_congestion)
data_categorical$muscle_ache <- as.factor(data_categorical$muscle_ache)
data_categorical$loss_smell_taste <- as.factor(data_categorical$loss_smell_taste)
data_categorical$headache <- as.factor(data_categorical$headache)
data_categorical$fatigue <- as.factor(data_categorical$fatigue)
data_categorical$diarrhoea <- as.factor(data_categorical$diarrhoea)
data_categorical$cough <- as.factor(data_categorical$cough)
data_categorical$chills <- as.factor(data_categorical$chills)
library(caret)
set.seed(22)
split1 <- createDataPartition(data_categorical$Covid_tested, p = .50)[[1]]
training <- data_categorical[split1,]
testing <- data_categorical[-split1,]
prop.table(table(training$Covid_tested))
library(DMwR)
smote_train <- SMOTE(Covid_tested ~., data = as.data.frame(training), perc.over = 100, perc.under = 200)
table(smote_train$Covid_tested)
smote_train$country <- NULL
preProcValues <- preProcess(smote_train[, -1],
method = c("center", "scale", "YeoJohnson", "nzv"))
transformed <- predict(preProcValues, newdata = training)
transformed <- transformed %>%
tidyr::drop_na()
# Obtain different perfomances measures, two wrapper functions
# For Accuracy, Kappa, the area under the ROC curve,
# sensitivity and specificity
fiveStats <- function (...)c(twoClassSummary(...),
defaultSummary(...))
# Everything but the area under the ROC curv
fourStats <- function(data, lev=levels(data$obs), model =NULL)
{
accKapp <- postResample(data[, "pred"], data[, "obs"])
out<- c(accKapp,
sensitivity(data[,"pred"], data[,"obs"], lev[1]),
specificity(data[,"pred"], data[,"obs"], lev[2]))
names(out)[3:4] <- c("Sens", "Spec")
out
}
table_perf = data.frame(model=character(0),
auc=numeric(0),
accuracy=numeric(0),
sensitivity=numeric(0),
specificity=numeric(0),
kappa=numeric(0),
stringsAsFactors = FALSE)
ctrl <- trainControl(method = "cv",
number = 10,
repeats = 5,
classProbs = TRUE,
summaryFunction = fiveStats,
verboseIter = TRUE,
allowParallel = TRUE)
set.seed(22)
rf.Fit <-train(Covid_tested ~., data=transformed,
method = "rf",
trControl =ctrl,
ntree = 1500,
tuneLength= 5,
metric="ROC")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.